Generalizing Carathéodory's uniqueness of harmonic parameterization to N dimensions
نویسنده
چکیده
Consider a sum of exponentials in dimensions, and let be the number of equispaced samples taken along the th dimension. It is shown that if the frequencies or decays along every dimension are distinct and O PRQ SUT , then the parameterization in terms of frequencies, decays, amplitudes, and phases is unique. The result can be viewed as generalizing a classic result of Carathéodory to dimensions. The proof relies on a recent result regarding the uniqueness of low-rank decomposition of -way arrays.
منابع مشابه
On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals
For any n-dimensional compact Riemannian manifold (M, g) without boundary and another compact Riemannian manifold (N,h), we establish the uniqueness of the heat flow of harmonic maps from M to N in the class C([0, T ),W ). For the hydrodynamic flow (u, d) of nematic liquid crystals in dimensions n = 2 or 3, we show the uniqueness holds for the class of weak solutions provided either (i) for n =...
متن کاملON THE UNIQUENESS OF HEAT FLOW OF HARMONIC MAPS AND HYDRODYNAMIC FLOW OF NEMATIC LIQUID CRYSTALS By
For any n-dimensional compact Riemannian manifold (M, g) without boundary and another compact Riemannian manifold (N,h), we establish the uniqueness of the heat flow of harmonic maps from M to N in the class C([0, T ),W ). For the hydrodynamic flow (u, d) of nematic liquid crystals in dimensions n = 2 or 3, we show the uniqueness holds for the class of weak solutions provided either (i) for n =...
متن کامل2 1 A ug 2 01 7 ON UNIQUENESS FOR THE HARMONIC MAP HEAT FLOW IN SUPERCRITICAL DIMENSIONS
We examine the question of uniqueness for the equivariant reduction of the harmonic map heat flow in the energy supercritical dimension d ≥ 3. It is shown that, generically, singular data can give rise to two distinct solutions which are both stable, and satisfy the local energy inequality. We also discuss how uniqueness can be retrieved.
متن کاملDisorder , Entropy and Harmonic Functions
We study harmonic functions on random environments with particular emphasis on the case of the infinite cluster of supercritical percolation on Z. We prove that the vector space of harmonic functions growing at most linearly is (d+ 1)-dimensional almost surely. Further, there are no nonconstant sublinear harmonic functions (thus implying the uniqueness of the corrector). A main ingredient of th...
متن کاملUniqueness of Solutions to Matrix Equations on Time Scales
In this article we establish the uniqueness of solutions to first-order matrix dynamic equations on time scales. These results extend the results presented in [16], to more complex systems of n × n matrices. Following the ideas in [5, Chap 5], we identify Lipschitz conditions that are suitable for generalizing n× n models on time scales.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 47 شماره
صفحات -
تاریخ انتشار 2001